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Since the value for f in the Colebrook equation cannot be explicitly extracted from the
equation, a numerical method is required to find the solution. Like all numerical methods,
we first assume a value for f, and then, in successive calculations, bring the original
assumption closer to the true value. Depending on the technique used, this can be a long
or slow process. The Newton-Raphson method has the advantage of converging very
rapidly to a precise solution. Normally only two or three iterations are required.

The Colebrook equation is:
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The technique can be summarized as follows:

1. Re-write the Colebrook equation as:
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2. Take the derivative of the function F with respect to f:
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3. Give a trial value to f. The function F will have a residue (a non-zero value). This
residue (RES) will tend towards zero very rapidly if we use the derivative of F in the
calculation of the residue.

. F
fo = fo ~ RES with RES ==
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For n = 0 assume a value for f,, calculate RES and then f;, repeat the process until RES
is sufficiently small (for example RES <1 x10°).
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